FLOW OF A MIXTURE OF RAREFIED GASES BETWEEN
TWO PARALLEL PLATES WITH SINUSOIDAL
CONCENTRATION DISTRIBUTION AT

THE BOUNDARY

V. G. Leitsina UDC 533.5

We investigate the effect of the transverse velocity component at a gas —plate boundary on
the flow regime of a two-component rarefied gas between two parallel plates with sinu-
soidal concentration distribution on the lower plate.

We consider the isothermal flow of a two-component rarefied gas between two parallel plates with a
sinusoidal concentration distribution on the lower plate,

We choose theX and Y axes, respectively, along, and along the normal to the surface of the lower
plate. The concentration on the upper plate (Y = d) is constant and equals ¢y, and on the lower plate the
concentration is of the form

)

We assume the following quantities to be small: the ratio (¢;—cg) /¢;, the coefficient o, and the ratio
of the mean free path of gas molecules to the wavelength L of the concentration variation. For ¢; #cq and
o = 0, there is a transverse motion of gas between the plates. For o # 0 on the lower plate there is diffu-
sion slip, as a result of which there arises slow macroscopic motion (the velocities u and v are small).

c——Lco(l—i—asin 2

We seek the pressure, density, and concentration distributions in the form
p=p,(1+8, p=p(l+0), c=c(l+1).

The quantities with subscripts zero correspond to the undisturbed lower plate (¢ =0, c=¢y), &, 0, and 7
are small.

Disregarding products of small quantities, we write the system of equations [1]

du dv

— =0,

ax oy 1)
B b, @)
Ox
& _ o, 3)
oy

At =0, @)
E=o0 -+ mr. )
Here we have introduced the following notation:
Y 20X _ oYy _ 2ap
T YT T
P

Po

Institute of Heat Exchange and Mass Exchange, Academy of Sciences of the Belorussian SSR, Mingk.
Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 17, No. 5, pp. 958-961, November, 1969. Original
article submitted December 9, 1968.

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for §15.00.

1456



We now state the boundary conditions. On the
g \ lower plate we must use a condition that takes account
' ‘ of diffusion slip {2, 3]. Furthermore, we consider
5 the nonzero transverse velocity component at the gas
/ \\ —wall boundary [4].
/4 /’::“::\_\/ //——i’\\ L Accordingly, the boundary conditions (in the
z .ZZTL —x i?". same approximation ag for the equation) are of the

following form:
Fig. 1. Streamlines correspondingtothe stream

function (22). fory =0
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for y = 27d /L, we use a condition similar to (6), and also the conditions
fa(i——cd}=a4~@}-, (10}
dy
=0 (1)
G

Solving Eq. (4) with conditions (8) and (11) (assuming the quantity exp{—27rd/ L} to be negligible), we
obtain

x:aexp{—y}sinx+—£%‘{;d—?y. 1z
Eliminating v and v from (1)~(3), we obtain the equation
AE =0, (13)
which has the solution
£ = 2u,b, exp { —y} sinx + 2u,b,0. (14)
The coefficients by and b, will be determined below.
Using (12) and (14), we solve Eq. (2) with boundary conditions (7) and (10):
u = exp{— y}cosx (k— byy), (15)
v=exp{—y}sinx (4 + b9) + by* + 4, (16)
where '
A =— 2 {eg—cp) L 1n
¢y {1 = ¢g) 2ad
= 4e
A= (18)
b= —— %% {19)
a3 — 2a,

Substituting (15) and (16) into (1), we obtain
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by =k+ 4, b,=0.
Hence,
u=exp{—y}cosx[k—(k+ A)yl, (20)
v=-exp{—y}sinx{d, + (k+ A) y] + A, (21)
In the approximation assumed, the longitudinal velocity is zero on the upper plate.
On the basis of (17) and (18) we introduce the stream function
W = exp{—y}cosx[d, + (k + 4) y] — A,x. (22)

The flow has period 27. Using (18) and (19), we obtaink + Ay >0. If cyq < ¢y, then Ay >0; for ¢4 > ¢,
we have A; <0. Inthe first case there is a singularity at x = 37/2, 77/2; in the second case, at x = 7/2,
57/2. Solution of the characteristic equation shows that the singularity is a saddle point. Figure 1 shows
streamlines corresponding to (22), for k <0.

As in [1], ¢ is of second order of smallness, and therefore ¢ ~—mT.

If ¢, = ¢g, then according to (17), we have A; =0. Inthis case, both the longitudinal and transverse
velocities equal zero on the upper plate.

Disregarding the effect of the transverse velocity component at the glass—wall boundary (i.e., replac-
ing conditions (7) and (10) by the condition v = 0 for both plates), we obtain
u=~k(l—yyexp{—y}cosx,
v == kyexp{ — y} sin x,
W = by exp { — y} cos x.
In this case the streamlines are closed curves with singularities of the "center" type, having coordi-

nates x =0, 7, 2m, ..,.;y=1. Theseresults agree withthe results obtained in [1]for the flow of a one- compo-
nent rarefied gas with sinusoidal temperature distribution at the wall. '

Thus, taking account of the effect of the transverse velocity component at the plate—gas boundary
substantially changes the nature of such flows.

NOTATION
A =9 fox? + 9 fayh
p and p are the gas pressure and density;
T is the gas temperature;
uand v are the longitudinal and transverse velocity components;
U is the coefficient of viscosity of the gas;
Dy, is the binary diffusion coefficient;
R; and R, are the gas constants of the components;
c is the concentration of component 1;
f is the accommodation coefficient.
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